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Abstract 

A method of unstructured tetrahedral mesh generation for general three-dimensional 

domain of arbitrary shape is presented. The method consists of two steps. First, 

generating the boundary tetrahedral mesh by the classic Delaunay method, then, using 

the advancing front method to create internal points and inserting them into the mesh 

by the Delaunay kernel procedure. The algorithm combines the advantages of the high 

point placement quality of the advancing front method and the high efficiency and 

convergence guaranty of the Delaunay algorithm. To get better efficiency, a new front 

identification and field point generation method is proposed and applied. Several 

examples have demonstrated the computational efficiency of our method and the high 

quality of meshes that generated within a reasonable time limit. 
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1. Introduction 
Many physical phenomena in science and engineering can be modeled by partial 

differential equations (PDEs). These equations can be solved by numerical methods, 

for instance, the finite element method (FEM), the finite volume method (FVM) and 

the boundary element method (BEM). The first step of using these methods is to 

partition the problem domain (or in the BEM, just the boundary of the problem 



domain) into small pieces of simple shape. These pieces are called elements, and are 

usually triangles or quadrilaterals (in two dimensions), or tetrahedral or hexahedral 

bricks (in three dimensions). Because of the high ability to adaptive the arbitrary 

shape of the problem domain, triangle and tetrahedron are widely used. The problem 

of triangular and tetrahedral mesh generation is of considerable interest in engineering. 

Elements are usually obtained by mesh generation procedures. For practical 

simulation, it is desirable to perform the mesh generation automatically. Many mesh 

generation methods have been proposed. Among these methods, the advancing front 

method [1-3] and the Delaunay algorithm [4-6] are most popular for unstructured 

mesh generation. 

This paper presents a new quality and efficient Delaunay tetrahedral mesh generation 

method coupled with the advancing front method. The combined method has the high 

quality point placement strategy of the advancing front method and the high efficient 

and the mathematical properties of the Delaunay approach. The method that combined 

the Delaunay and advancing front method has been described first by Rebay [6] and 

Muller et al. [7]. And Pascal J. Frey [8] extends this method to three dimensions. In 

addition to their work, we use a new efficient front identification and point generation 

procedure to further improve the efficiency. Our method can generate high quality 

mesh within a reasonable time limit. And high quality tetrahedral mesh can be 

generated by our method even in the case where the gradient of controlling element 

size is very steep. The resulting tetrahedral mesh will be used in the boundary face 

method (BFM) [9] to obtain and display the results of the arbitrary internal points. We 

have developed an interface between BFM and UG-NX(R) (Unigraphics NX). We 

have also developed an adaptive triangular mesh generation method over an 

arbitrarily parametric surface based on the advancing front method combined with a 

quad-tree procedure to generate boundary triangular mesh [10]. After surface 

triangular mesh generation, the points of the boundary are inserted using the Delaunay 

kernel to obtain the boundary tetrahedral mesh. Then, internal points are iteratively 

created using the advancing front method and inserted into the existing mesh with the 

Delaunay insertion algorithm. In our method, the front identification and field point 

creation process is different from the previous work. We define the front which is 

suitable for creating a new point as active front. Therefore, not all fronts are used to 

create a new point, just the active fronts. So, our method is more efficient than the 

previous work. The mesh size is controlled by the control space [11]. The final mesh 



quality is improved by optimization techniques. 

In the following sections, section 2 describes the general scheme of the mesh 

generation algorithm. Within section 3 the creation of field point and the identification 

of the front are described. The mesh control is discussed in section 4. Section 5 

provides three application examples and in section 6 the current work is summarized. 

2. Scheme of the method 
The most popular approaches to triangular and tetrahedral mesh generation can be 

divided into two classes: Delaunay triangulation methods and advancing front 

methods. Usually, these methods start from the discretization of the domain boundary. 

The domain boundary is represented by a set of edges and faces in three dimensions.  

There are many algorithms for Delaunay triangulation. However, the most used 

practical algorithm, applicable in both two and three dimensions, is the 

Bowyer-Watson algorithm [4-6]. This method adds points sequentially into an 

existing Delaunay triangulation. It usually starts from a very simple triangulation 

enclosing all the points to be triangulated. The basic operation of this method is the 

Delaunay insertion of a vertex into the existing triangulation. Take two-dimensional 

case as an example. At the beginning of the Delaunay insertion of a vertex, find all 

existing triangles whose circumcircle contains the new point. First, the triangle which 

contains the new point has to be found. Then the neighbours of this triangle are 

searched and then their neighbours, etc., until no more neighbours have the new point 

in their circumcircle. Delete these triangles, which create (always) a convex cavity. 

Join the new point to all the vertices on the boundary of the cavity. After all of the 

field points have been inserted, the boundary is recovered. Then we get the final 

mesh. 

Subsequently we describe the conventional advancing front method. The advancing 

front method starts from the discretization of the domain boundary. A base front is 

selected from the set of fronts. A new tetrahedron is generated by the base front with a 

new point. The new point is created by the base front. After a new tetrahedron is 

generated, the old fronts are deleted and new fronts are added. As this procedure is 

repeated, the front advances over the domain and changes continuously. Repeat the 

creation loop as long as the front is not empty [12]. 

The advancing front method has the high quality point placement strategy. But this 

method is very time consuming. The point creation process requires the determination 



whether the new element intersects any existing element and if so, whether the new 

element is too close to any existing element. Most of the time is spent on these 

determinations. It is a complex task to design an efficient and robust advancing front 

method program satisfying the desirable criteria. 

In an attempt to overcome this difficult task, we suggest to use the advancing front 

method as an internal point creation tool, the Delaunay algorithm as an insertion tool 

and the Delaunay boundary tetrahedral mesh as a background mesh. In the present 

method, similar to the conventional advancing front method, the front is identified and 

internal points are created to form optimal tetrahedral elements in accordance with an 

element-size defined by the control space. A Delaunay kernel procedure is used to 

insert these points into the existing triangulation. Thus the convergence of the process 

is always ensured. 

In our method, the advancing front method is used to generate the boundary triangular 

mesh. And the element size as well as element densities is only related to the given 

boundary triangular discretization. The corresponding scheme of the tetrahedral mesh 

generation algorithm can be briefly described as follows: 

Scheme of the tetrahedral mesh generator 

(1) Boundary tetrahedral mesh generation 

1. Creation a box enclosing the domain; 

2. Insertion of the boundary point into the initial mesh by Delaunay kernel; 

3. Regeneration the boundary; 

(2) Domain tetrahedral mesh generation 

We define all the triangles of the surface mesh as the initial fronts. Identify the 

initial front to get the active front. 

While (the set of active fronts is not empty) 

  Loop over facets of the set of active fronts to create new points 

Calculate the location of the new point 

   Filtration of the new point 

     If the new point satisfies the criterion 

     Insert it using Delaunay kernel 

Add the new triangle into the set of fronts if it belongs to two 

elements of new tetrahedrons 

Loop over the new fronts to get active front 

   Identification of the new front 



     If the front satisfies the criterion 

     Add it into the set of active fronts 

First step of the tetrahedral mesh generation algorithm is boundary tetrahedral mesh 

generation. At first, we construct a bounding box enclosing the domain. The box as a 

convex environment encloses all the boundary points. The box is defined by eight 

vertices and it is divided into five tetrahedrons. All the boundary points are inserted 

into the initial mesh using the Delaunay kernel. Then, the boundary is recovered, and 

we obtain the boundary tetrahedral mesh. 

After the boundary tetrahedronization, the present method is used to generate the 

domain tetrahedral mesh. The tetrahedral mesh is obtained by adding field points 

inside the existing mesh and then optimized so as to complete the final mesh of the 

domain. Similar to the conventional advancing front method, we define the suitable 

triangle generated in the last step as the front. And all the triangles of the boundary 

triangular discretization are defined as the initial fronts. We define the front which can 

be used to create new points as the active front. The internal points are iteratively 

created by the active front to form optimal tetrahedral elements and inserted into the 

previous mesh by Delaunay kernel. The quality of the generated mesh can be 

improved dramatically by several techniques of mesh optimization. So, after the mesh 

generation the Laplacian smoothing and topological optimization process are used to 

improve the quality of the mesh. 

Each of these steps is briefly described in the following sections. First, the creation of 

field point and the front identification are detailed step by step. Afterwards, the mesh 

control is described. 

3. Creation of field point and identification of front 
In the previous work, the field point is created with respect to a front face. The new 

vertex creation process is the same as advancing front method. The new vertex is 

created in a normal direction to the front at a distance of mesh size h. The front simply 

takes the form of a set of triangles between two elements. And these fronts are all 

used to create a new field point [8]. 

In our method, the field point is created with respect to a front, but the new point 

creation process is different from the conventional advancing front method. The front 

also simply takes the form of a set of faces between two elements. But the front needs 

to be identified in order to obtain the active front, because not all fronts are suitable 



for creating a new point. We define the front which is suitable for creating a new point 

as active front. Therefore, not all fronts are used to create a new point, just the active 

fronts. And the process of the front identification is simple. So, our method is more 

efficient than the previous work. 

3.1 Creation of field point 
In this section, we describe the creation of an optimal point with respect to an active 

front, leading to the creation of an ideal tetrahedron. At first, we describe how to get 

an ideal tetrahedron. After the insertion of new points, many new tetrahedrons and 

triangles are generated. Then we need to get the set of fronts. After the front 

identification, we get a set of active fronts. Assume that △P1P2P3 is a triangle of the 

set of active fronts. In two dimensions, equilateral triangle is suitable for the 

numerical computation. In three dimensions, we always want to get regular 

tetrahedron. Assume that h is the requested size. So the length of the tetrahedron’s 

edges is desired to equal to h, as shown in Figure 1. 

 
Figure 1. The ideal tetrahedron 

h is calculated by control space which is described in section 4. We have to determine 

the position of the new ideal node N, so that the resulting element is as equilateral as 

possible while respecting the element size h. Let point C be the circumcircle center of 

△P1P2P3. We can prove that line NC is perpendicular to the plane P1P2P3. Then, we 

just have to calculate the location of point C to get the coordinate of point N. Let us 

assume now that we know the coordinates of points P1(x0, y0, z0), P2(x1, y1, z1), P3(x2, 

y2, z2). We can calculate the coordinate of point C by solve the following equations. n 

(n1, n2, n3) is the normal vector of the plane P1P2P3. 
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Then we can calculate the circumcircle’s radius r of the △P1P2P3. 
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The length of the new point to the plane P1P2P3 is d= (h2 – r2 )0.5. 

Then the location of the new point N can be calculated by  

                        (xn, yn, zn)=(xc, yc, zc) ± dn.                   (6) 

The distributions of field points must satisfy the mesh size distributions. As every new 

point is created apart from the others, a filtration process can remove the point which 

violates the size criterion when compared with a previously selected point. And new 

points are generated in both two sides of the active fronts. But both two sides of the 

active fronts may not be suitable for creating a new tetrahedron. So, new points need 

to be filtrated.  

1. Let L(NP) be the length between new point N and arbitrary point P. N is filtered if 

the length L(NP) < 0.8h.  

2. Let T(P1, P2, P3, P4 ) be the tetrahedron which links to the current front. △P1P2P3 

is the current front. Let L be the average length of three edges which link to P4. N is 

filtered if L < h. 

3.2 Identification of front 
As mentioned in the previous section, the identification and update of the front is one 

of the most important steps of the present algorithm. In the conventional advancing 

front method, it is important to design an explicit data structure to management the 

front. In our algorithm, we only use the active front to create a field point. And the 



fronts need to be identified to obtain the active fronts. 

At the beginning of the algorithm, we define all the triangles of the boundary 

triangular mesh as the initial fronts. A set of new triangles is created after the insertion 

of points at stage i. In order to improve the efficiency of the algorithm, we need to 

identify these new triangles to get active front. Only the active front is suitable for 

generating a tetrahedron satisfying the mesh size distribution. At first, we create the 

front. Let Fi be a triangle of the set of new triangles created at stage i. If Fi belongs to 

two new tetrahedrons created at stage i, it is added to the set of fronts. At the second 

step, the front is identified in order to obtain the active front, because not all fronts are 

suitable for creating a new point. Let r be the Circumcircle radius of the front and h be 

the mesh size of the center point of the front. Mesh size h is extracted from the control 

space. The distance between new point and current front is calculated by d= (h2 – r2 )0.5. 

So, we must insure h > r. The front satisfied this criterion can be used to create a new 

point. If h > r, the front is added into the set of active front. If h < r, the new 

tetrahedron generated by this front can not satisfy the mesh size distribution, and the 

front is eliminated. During the mesh generation, if the front can not create a new point, 

it is deleted. 

After all the fronts are identified, ideal points are generated with every active front. 

We have to determine which side of the triangle the new point will locate at. We 

prescribe that the normal vector of the initial front point to the inner of the domain. In 

our algorithm, new points are generated in both two sides of the active fronts. And 

these new points need to be filtrated, as described in previous section. 

4. Mesh control 
In our algorithm, we use the background mesh to specify mesh size distributions over 

arbitrarily shaped domains. The background mesh covers the problem domain 

completely, and consists of triangles and tetrahedrons in two and three dimensions, 

respectively [11]. The mesh size attributes are assigned to the nodes of the 

background mesh. A linear variation of the mesh size is assumed within each element. 

Hence, the mesh size at an arbitrary point within the domain is calculated by linear 

interpolation of the nodal values of the element which the point is contained in. 

The background mesh is defined by the boundary mesh of the domain. To obtain the 

mesh size of an arbitrary point within the domain, it is only needed to define the size 

at every vertex of background mesh. Let Q be a vertex of the background mesh, the 



size of the vertex is calculated by  
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Lmax(Q) (resp. Lmin(Q)) represents the length of the largest (resp. smallest) edge 

connected to Q. 

For every point Q within the domain, there is a tetrahedron T enclosing it, as shown in 

Figure 2. Let αi(1≤ i ≤ 4) be the volume coordinates of Q in T, h(Q)can be defined by 

the way of an arithmetic interpolation 
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Pi , (1≤ i ≤ 4) are the vertices of T. 

Before we calculate the mesh size of the point Q, we have to work out the location of 

the given point. It takes a lot of time to locate the point. In order to improve the 

efficiency we use the grid to manage the background mesh [13]. At the beginning, the 

background mesh is covered by structured grids with a large size. We create an array, 

and each element in the array corresponds to a cell of the grids. The element of the 

array stores the index of tetrahedrons which overlapped the cell. At first, we find the 

cell which contains the given point Q. Then, we can quickly find the tetrahedron 

which contains the point Q. 

 
Figure 2. Background mesh 

5. Examples of application 
In this section we select three examples to demonstrate the robustness and efficiency 

of the proposed method. All the mesh generation process are carried out on the 

desktop computer with Intel (R) Core(TM)2 Duo CPU E7400 (2.80GHz). The first 



example is a crankshaft. Figure 3 shows the generated tetrahedral mesh. The mesh 

consists of 2062 surface elements, 5465 volume elements, and 1522 mesh nodes. The 

total CPU time needed for the mesh generation is less than 1 seconds. Figure 4 shows 

the CPU times needed for the mesh generation of the first example with different 

element number. We can see that the CPU time increases linearly with the number of 

elements. More than 140000 elements can be generated by our method within 40 

seconds.  

 
Figure 3. Example 1: tetrahedral mesh 

 
Figure 4. CPU times for example 1 

The second example involves a complex geometric model drawn in Figure 5. This 

example is presented to demonstrate the ability of our method to generate meshes 

even in the case where the gradient of controlling element size is very steep. The 

mesh consists of 3254 surface elements, 13510 volume elements, and 3134 mesh 

nodes. The total CPU time needed for the mesh generation is 4 seconds. Figure 6 

shows the generated tetrahedral mesh. 



 
Figure 5. Example 2: surface mesh 

 
Figure 6. Example 2: tetrahedral mesh 

 
Figure 7. Example 1: quality classes 



 
Figure 8. Example 2: quality classes 

These two examples are compared to the mesh generated by Netgen. Netgen is an 

automatic tetrahedral mesh generator. The Netgen uses conventional Delaunay 

algorithm to generate tetrahedral mesh. Our method and Netgen use the same surface 

triangular mesh to generate tetrahedral mesh. The details of our surface triangular 

mesh generation algorithm can be found in references [10]. The quality of the 

tetrahedron is evaluated by element shape measures [14]. An element shape measure 

approaches a maximum value only for the equilateral tetrahedron, and approaches 

zero for degenerated tetrahedral of zero volume. In this paper, the element measure is 

the radius ratio ρ. The radius ratio of a tetrahedron T is defined as ρ=3r/R, where r 

and R are, respectively, the inradius and circumradius of T. Figure 7 and 8 show the 

quality classes of the volume elements generated by our method and Netgen. Table 1 

shows the number of elements of each quality class. 

Element Number 
Quality 

≤0.1 ≤0.2 ≤0.3 ≤0.4 ≤0.5 ≤0.6 ≤0.7 ≤0.8 ≤0.9 ≤1.0 

Total Element 

Number 

Our Method 0 0 0 6 25 127 567 1309 2145 1286 5465 
1 

Netgen 1 8 52 100 151 431 870 1302 1245 457 4617 

Our Method 0 0 2 6 40 212 958 2930 5527 3835 13510 
2 

Netgen 0 0 7 28 118 445 1467 3188 4162 1825 11240 

Table 1．Distribution of quality classes 
Table 1 shows that the mesh generated by our method doesn’t contain poor quality 

element while the mesh generated by Netgen contains several poor quality element. 

And Figure 8 and 9 show that the mesh quality of the mesh generated by our method 



is better than the mesh generated by Netgen. The number of elements generated by 

our method whose quality coefficient is between 0.7 and 1.0 accounts for 86.73% and 

90.98% of the total element number while the number of elements generated by 

Netgen whose quality coefficient is between 0.7 and 1.0 accounts for 65.06% and 

81.62% of the total element number. Compared to conventional Delaunay algorithm, 

our method can generate high quality mesh within a reasonable time limit. And our 

method can generate high quality tetrahedral mesh even in the case where the gradient 

of controlling element size is very steep. 

The third example is a complex machine component model drawn in Figure 9. The 

mesh generated by our method consists of 11722 surface elements, 43979 volume 

elements, and 10435 mesh nodes. The total CPU time needed for the mesh generation 

is 9 seconds. Figure 10 shows the generated tetrahedral mesh.  

 

Figure 9. Example 3: surface mesh generated by our method 



 

Figure 10. Example 3: tetrahedral mesh generated by our method 

 

Figure 11. Example 3: mesh generated by Hypermesh 



 

Figure 12. Example 3: tetrahedral collapse classes 

 

Figure 13. Example 3: quality classes 

Element Number 
collapse 

≤0.1 ≤0.2 ≤0.3 ≤0.4 ≤0.5 ≤0.6 ≤0.7 ≤0.8 ≤0.9 ≤1.0 
Total Element Number 

Our Method 0 0 2 63 619 2519 7782 15547 14563 2884 43979 

Hypermesh 0 0 0 22 473 4324 14610 19362 8843 733 48367 

Table 2．Distribution of tetrahedral collapse classes 

This example is compared to the mesh generated by Hypermesh. Hypermesh is a 

powerful meshing software. The mesh generated by Hypermesh contains 17728 

surface elements, 48367 volume elements. Figure 11 shows the mesh generated by 

Hypermesh. Hypermesh spends less time to generate tetrahedral mesh than our 

method. Our method may be less efficiency than the powerful commercial software 

which have been highly optimized and paralleled in code. 



All of the jacobians of the elements generated by Hypermesh are greater than 0.7. The 

minimum tetrahedral collapse is 0.32. Hypermesh uses tetrahedral collapse as one of 

the mesh quality estimate criteria. Hypermesh calculates tetrahedral collapse by the 

following procedure. At each of the four nodes of the tetrahedron, the distance from 

the node to the opposite side of the element is divided by the square root of the area of 

the opposite side. The minimum value found is normalized by dividing it by 1.24. As 

the tetrahedral collapses, this value approaches 0.0. For a perfect tetrahedron, this 

value is 1.0. Figure 12 shows the tetrahedral collapse classes of the volume elements 

generated by Hypermesh and our method. Table 2 shows the number of elements of 

each tetrahedral collapse class. Figure 13 shows the quality classes of the volume 

elements generated by our method. The mesh generated by our method doesn’t 

contain poor quality element. Elements generated by our method whose quality 

coefficient is between 0.7 and 1.0 account for 96% of the total element number. We 

can see that the mesh quality of the mesh generated by our method is as good as the 

mesh generated by Hypermesh. 

6. Conclusion  
In this paper, we proposed a Delaunay mesh generation method coupled with 

advancing front method for arbitrary three-dimensional domains. The proposed 

method combines the advantages of efficiency and nice mathematical properties of the 

Delaunay algorithm and the high quality point placement strategy of the advancing 

front method. A new front identification and field point generation method is 

proposed and applied to get better efficiency. Complex numerical examples have been 

shown to illustrate that the proposed method is numerically reliable, has favorable 

efficiency and has good mesh quality characteristics. 
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